\(\int \frac {1}{(3+b \sin (e+f x)) \sqrt {c+d \sin (e+f x)}} \, dx\) [748]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [F(-1)]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 27, antiderivative size = 75 \[ \int \frac {1}{(3+b \sin (e+f x)) \sqrt {c+d \sin (e+f x)}} \, dx=\frac {2 \operatorname {EllipticPi}\left (\frac {2 b}{3+b},\frac {1}{2} \left (e-\frac {\pi }{2}+f x\right ),\frac {2 d}{c+d}\right ) \sqrt {\frac {c+d \sin (e+f x)}{c+d}}}{(3+b) f \sqrt {c+d \sin (e+f x)}} \]

[Out]

-2*(sin(1/2*e+1/4*Pi+1/2*f*x)^2)^(1/2)/sin(1/2*e+1/4*Pi+1/2*f*x)*EllipticPi(cos(1/2*e+1/4*Pi+1/2*f*x),2*b/(a+b
),2^(1/2)*(d/(c+d))^(1/2))*((c+d*sin(f*x+e))/(c+d))^(1/2)/(a+b)/f/(c+d*sin(f*x+e))^(1/2)

Rubi [A] (verified)

Time = 0.14 (sec) , antiderivative size = 75, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.074, Rules used = {2886, 2884} \[ \int \frac {1}{(3+b \sin (e+f x)) \sqrt {c+d \sin (e+f x)}} \, dx=\frac {2 \sqrt {\frac {c+d \sin (e+f x)}{c+d}} \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} \left (e+f x-\frac {\pi }{2}\right ),\frac {2 d}{c+d}\right )}{f (a+b) \sqrt {c+d \sin (e+f x)}} \]

[In]

Int[1/((a + b*Sin[e + f*x])*Sqrt[c + d*Sin[e + f*x]]),x]

[Out]

(2*EllipticPi[(2*b)/(a + b), (e - Pi/2 + f*x)/2, (2*d)/(c + d)]*Sqrt[(c + d*Sin[e + f*x])/(c + d)])/((a + b)*f
*Sqrt[c + d*Sin[e + f*x]])

Rule 2884

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 2886

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d/
(c + d))*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {\sqrt {\frac {c+d \sin (e+f x)}{c+d}} \int \frac {1}{(a+b \sin (e+f x)) \sqrt {\frac {c}{c+d}+\frac {d \sin (e+f x)}{c+d}}} \, dx}{\sqrt {c+d \sin (e+f x)}} \\ & = \frac {2 \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} \left (e-\frac {\pi }{2}+f x\right ),\frac {2 d}{c+d}\right ) \sqrt {\frac {c+d \sin (e+f x)}{c+d}}}{(a+b) f \sqrt {c+d \sin (e+f x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.25 (sec) , antiderivative size = 74, normalized size of antiderivative = 0.99 \[ \int \frac {1}{(3+b \sin (e+f x)) \sqrt {c+d \sin (e+f x)}} \, dx=-\frac {2 \operatorname {EllipticPi}\left (\frac {2 b}{3+b},\frac {1}{4} (-2 e+\pi -2 f x),\frac {2 d}{c+d}\right ) \sqrt {\frac {c+d \sin (e+f x)}{c+d}}}{(3+b) f \sqrt {c+d \sin (e+f x)}} \]

[In]

Integrate[1/((3 + b*Sin[e + f*x])*Sqrt[c + d*Sin[e + f*x]]),x]

[Out]

(-2*EllipticPi[(2*b)/(3 + b), (-2*e + Pi - 2*f*x)/4, (2*d)/(c + d)]*Sqrt[(c + d*Sin[e + f*x])/(c + d)])/((3 +
b)*f*Sqrt[c + d*Sin[e + f*x]])

Maple [A] (verified)

Time = 1.48 (sec) , antiderivative size = 151, normalized size of antiderivative = 2.01

method result size
default \(\frac {2 \left (c -d \right ) \sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}\, \sqrt {-\frac {\left (\sin \left (f x +e \right )-1\right ) d}{c +d}}\, \sqrt {-\frac {d \left (\sin \left (f x +e \right )+1\right )}{c -d}}\, \Pi \left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, -\frac {\left (c -d \right ) b}{d a -c b}, \sqrt {\frac {c -d}{c +d}}\right )}{\left (d a -c b \right ) \cos \left (f x +e \right ) \sqrt {c +d \sin \left (f x +e \right )}\, f}\) \(151\)

[In]

int(1/(a+b*sin(f*x+e))/(c+d*sin(f*x+e))^(1/2),x,method=_RETURNVERBOSE)

[Out]

2*(c-d)*((c+d*sin(f*x+e))/(c-d))^(1/2)*(-(sin(f*x+e)-1)*d/(c+d))^(1/2)*(-d*(sin(f*x+e)+1)/(c-d))^(1/2)*Ellipti
cPi(((c+d*sin(f*x+e))/(c-d))^(1/2),-(c-d)*b/(a*d-b*c),((c-d)/(c+d))^(1/2))/(a*d-b*c)/cos(f*x+e)/(c+d*sin(f*x+e
))^(1/2)/f

Fricas [F(-1)]

Timed out. \[ \int \frac {1}{(3+b \sin (e+f x)) \sqrt {c+d \sin (e+f x)}} \, dx=\text {Timed out} \]

[In]

integrate(1/(a+b*sin(f*x+e))/(c+d*sin(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

Timed out

Sympy [F]

\[ \int \frac {1}{(3+b \sin (e+f x)) \sqrt {c+d \sin (e+f x)}} \, dx=\int \frac {1}{\left (a + b \sin {\left (e + f x \right )}\right ) \sqrt {c + d \sin {\left (e + f x \right )}}}\, dx \]

[In]

integrate(1/(a+b*sin(f*x+e))/(c+d*sin(f*x+e))**(1/2),x)

[Out]

Integral(1/((a + b*sin(e + f*x))*sqrt(c + d*sin(e + f*x))), x)

Maxima [F]

\[ \int \frac {1}{(3+b \sin (e+f x)) \sqrt {c+d \sin (e+f x)}} \, dx=\int { \frac {1}{{\left (b \sin \left (f x + e\right ) + a\right )} \sqrt {d \sin \left (f x + e\right ) + c}} \,d x } \]

[In]

integrate(1/(a+b*sin(f*x+e))/(c+d*sin(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate(1/((b*sin(f*x + e) + a)*sqrt(d*sin(f*x + e) + c)), x)

Giac [F]

\[ \int \frac {1}{(3+b \sin (e+f x)) \sqrt {c+d \sin (e+f x)}} \, dx=\int { \frac {1}{{\left (b \sin \left (f x + e\right ) + a\right )} \sqrt {d \sin \left (f x + e\right ) + c}} \,d x } \]

[In]

integrate(1/(a+b*sin(f*x+e))/(c+d*sin(f*x+e))^(1/2),x, algorithm="giac")

[Out]

integrate(1/((b*sin(f*x + e) + a)*sqrt(d*sin(f*x + e) + c)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{(3+b \sin (e+f x)) \sqrt {c+d \sin (e+f x)}} \, dx=\int \frac {1}{\left (a+b\,\sin \left (e+f\,x\right )\right )\,\sqrt {c+d\,\sin \left (e+f\,x\right )}} \,d x \]

[In]

int(1/((a + b*sin(e + f*x))*(c + d*sin(e + f*x))^(1/2)),x)

[Out]

int(1/((a + b*sin(e + f*x))*(c + d*sin(e + f*x))^(1/2)), x)